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Network analysis allows investigators to explore the many
facets of brain networks, particularly the proliferation of
disease, using graph theory tomodel the diseasemovement.
One of the hypotheses behind the disruption in brain net-
works in Alzheimer’s disease (AD) is the abnormal accumu-
lation of beta-amyloid plaques and tau protein tangles. In
this study, the potential use of percolation centrality to study
the movement of beta-amyloids, as a feature of given PET
image-based networks, is studied. The PET image-based
network construction is possible using a public access
database - Alzheimer’s Disease Neuroimaging Initiative,
which provided 551 scans. For each image, the Julich at-
las provides 121 regions of interest, which are the network
nodes. Besides, the influential nodes for each scan are cal-
culated using the collective influence algorithm. Analysis
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†Equally contributing authors.

1



2 Gautam et al.
of variance (p<0.05) yields the region of interest GM Su-
perior parietal lobule 7A L, for which percolation central-
ity is significant irrespective of the tracer type. Pairwise
variance analysis between the clinical groups provides five
and twelve candidates for AV45 and PiB. Multivariate lin-
ear regression between the percolation centrality values for
nodes and psychometric assessment scores reveals Mini-
Mental State Examination is a reliablemetric. Finally, a rank-
ing of the regions of interest is made based on the collec-
tive influence algorithm to indicate the anatomical areas
strongly influencing the beta-amyloid network. Through
this study, it is possible to use percolation centrality values
to indicate the regions of interest that reflect the disease’s
spread.
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1 | INTRODUCTION
Alzheimer’s disease predominantly stands out when
it comes to neurodegenerative diseases—affecting the
middle-age (early-onset Alzheimer’s disease (AD)) and
the old-age (Late-onset AD) human population. Current
projections are estimated to cost about 2 trillion US Dol-
lars by 2030[1], affecting 75 million individuals by the
same year. The indirect costs are estimated to be about
244 billion US Dollars[2]. With no sight of a cure for
AD and with increasing cases, early diagnosis and active
management is the key to tackling this disease for now.
The ability to predict the disease’s progression with high
accuracy helps design a suitable treatment regime at an
early stage, thereby bringing the disease’s management
to an affordable cost range.

Current methods of diagnosis of the disease include
both non-invasive and invasive techniques of investiga-
tions ranging from Positron Emission Tomography (PET)
scans or Cerebrospinal Fluid (CSF) analysis to bedside
pen and paper-based questionnaires; each with its pros

and cons. The ability to accurately determine that the
dementia is due to Alzheimer’s is of utmost importance,
followed by the ability to indicate the severity of the dis-
ease, which is a unique challenge.

A combination of techniques or criteria is currently
employed to detect and determine the extent of demen-
tia due to AD. Methods include family history, psychi-
atric history for cognitive and behavioral changes, which
is then followed by psychometric assessments such as
Mini-Mental State Examination (MMSE) [3], Frontal As-
sessment Battery[4], and the Neuropsychiatric Inven-
tory Questionnaire (NPIQ)[5]. Others include Genetic
testing[6] for markers of AD, the apolipoprotein-e4
(APOE-e4)[7], or the use of blood testing or brain imag-
ing to rule out dementia due to other factors. The use
of PET imaging[8] and lumbar puncture[9] to determine
the levels of beta amyloids in either of them beyond the
normal levels is the current standard of practice for the
determination of dementia due to AD[10, 11].

Positron Emission Tomography or PET imaging in-
volves the use of radiopharmaceuticals such as 2-[18F],
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florbetapir-fluorine-18 (AV45), or 11C-Pittsburgh com-
pound B (PiB). AV45 and PiB[12] are comparatively
newer and different in terms of the image construction
mechanism. Both AV45 and PiB bind to beta-amyloid
but vary in their half-life. AV45 has a half-life of 109.75
minutes and PiB, 20 minutes[13]. A comparison be-
tween PiB and AV45 varies in the fact that AV45 shows
uptake within the white matter region[14].

The application of network analysis/graph theory
to anatomical neural networks has proved useful in un-
derstanding the brain connectivity[15, 16] deviations
under various psychological and neurological disease
states. Network analysis on neuroimaging data such as
EEG, MEG, fMRI, and PET scans proves to be useful to
show the variation between a cognitively normal popu-
lation versus other diagnostic states using various graph-
theoretic metrics[17, 18].

Network analysis on AD is a practical application
wherein it describes the Alzheimer’s brain network’s
behavior. Connectivity analysis using fMRI and EEG
data reports provides mixed responses; when compar-
ing AD patients and the control group[19], there is an
increase or decrease in the network’s connectivity. A
reduction in connectivity could explain the cortical at-
rophy/disruption of the network. An increase could ex-
plain the compensatory mechanism[20].

Network Analysis on PET images related to AD
mainly revolve around learning models or are limited to
tracers that focus on the metabolic networks and the as-
sociated deviations of these networks[21]. Other meth-
ods include applying algorithms to the raw PET images
to recognize patterns to resolve differences between
healthy controls and patients with neurodegeneration
[22]. Recent methods include genetic and protein mark-
ers to improve predicting the course of the disease[23].
These methods rely on a considerable amount of data
points and equally reliable computing hardware; this is
currently a challenge. Given that ADdiagnosis is a global
challenge, a method that works well in a spectrum of
nations, from developed countries such as the United
States to rural hospitals of southeast Asia or Africa[2] is
a basic necessity. Methods such as principal component
analysis have a few drawbacks; for instance, choosing

the number of principal components and data standard-
ization for multiple PET scans of patients with different
tracers leads to controlling multiple variables. Regres-
sion analysis is based on the assumption that there are
cause and effect in place. Furthermore, a relationship
that is present within a limited data set might get over-
turned with an exhaustive data set.

To understand the propagation of beta-amyloids,
we propose applying graph theoretic methods on
PET images to understand the advancement of beta-
amyloids. Themain benefit of adding this method is that

1. This does not introduce any new steps for data col-
lection from the patient and, at the same time

2. adds value to the existing data by computing the
percolation centrality of a given node at a given time

Network topology offers insights into the evolution of
the network in a clinical setting. Studying such an evo-
lution provides a possibility to understand the weak
links within the said anatomical neural networks. Such
networks’ structural connectivity information yields the
source and sink of neurodegeneration with the brain ar-
chitecture.

Percolation centrality is defined as the proportion
of ‘percolated paths’ that pass through that node; this
measure quantifies the relative impact of nodes based
on their topological connectivity, as well as their perco-
lated states. In other words, it is one such graph metric
that looks at the extent to which a given node within
a network has percolated information or can percolate
information. The volume of information transmitted via
a given node is provided by the values ranging from 0.0
to 1.0[24, 25]. Prior exploration of percolation centrality
on disease networks[26, 27, 28, 29] and percolation cen-
trality in disease networks of the brain[30] have shown
this as a promising metric for brain network investiga-
tion.

The knowledge on the application of percolation
centrality on human PET-image based networks is
scarce at present. This work aims at adding knowledge
to the gap. On the other hand, collective influence
provides a minimum set of nodes or regions of the in-
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terest that can transfer information or spread disease
with ease with optimal spread[31] based on the optimal
percolation theory. By examining the network for the
minimum set of nodes, this set will provide the regions
of interest within the brain that optimally move beta-
amyloid, disrupting the normal functioning of the exist-
ing neural networks. Thus, the ability to detect the dis-
ease and predict the rate of progression of the disease at
an early stage is imperative. To this end, the study aims
to answer two main questions: 1) Can percolation cen-
trality measure be used to determine the percolation of
beta-amyloids within the brain? 2) Can the collective in-
fluence algorithm provide a minimum set of nodes that
are vital to the AD network?

2 | MATERIALS AND METHODS
2.1 | Current Ethics Statement
2.1.1 | IRB Waiver Statement
Informed consent from the patients is obtained prior to
the assessment carried out by ADNI study team (See
ADNI website for details), and this study is a secondary
data analysis of the ADNI data collection, which aims
at providing a simplified metric to an already diagnosed
patient. The data access and usage is within the ADNI
data use agreements

2.2 | Patient Distribution
Based on the tracer agents used for acquiring the PET
images, each diagnostic state subset of the data set is
divided into the two available tracers; AV45[32] and
PiB[13].

The patients are categorized as Cognitively normal,
with Mild Cognitive Impairment, or having Alzheimer’s
Disease (AD) based on the ADNI study’s psychometric
assessments. Next, the PET image is matched with the
patient’s diagnostic state at the time of the imaging pro-
cedure. This provides us with a set of observations for
each type of tracer for each patient condition clinical
group (see Table 1). Finally, the resulting set of patients

are matched with the table containing demographic in-
formation providing a total of 531 patients.

3 | NETWORK CONSTRUCTIONAND PROCESSING
3.1 | PET Image preprocessing
Image preprocessing is carried out in two steps:

1. Combining individual frames of the PET image to
form a 4D raw activity image. This is done using
the fslmerge utility included in FSL[33].

2. The 4D raw activity image is converted to a 4D SUV
image using the following formula:

SUV =
cimg

ci nj
(1)

cimg (Mbq ml−1) is given by the raw activity image
and ci nj = I D

BW . I D (MBq) is the injection dose[34],
and BW (g) is the bodyweight of the patient, con-
sidering the equivalency 1g = 1ml

3. Coregistering the 4D SUV image from subject
space to MNI[35] space. This is done using
FreeSurfer[36]. The image used for coregistration
is the MNI152_T1_2mm_brain.

4. Spatially realigning the PET frames to correct for
motion. This was done usingMCFLIRT.[37] Themo-
tion correction occurs with 6 DOF. The PET frames
are realigned using the mean image as a template.
The mean image is obtained by applying the motion
correction parameters to the time series and aver-
aging the volumes.

Given the large volume of data, carrying out compu-
tation in a sequential manner would be highly time-
consuming. Thus, to parallelize this operation, GNU
Parallel[38] was used. This could potentially give a max-
imum speedup of up to 12 times on the system we used
for computation (6-core, hyperthreaded Intel i7).
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3.2 | PET Image-based NetworkConstruction
The network is constructed using the regions of interest
(ROIs) from the Julich Atlas[39, 40, 41]. This atlas pro-
vides 121 ROIs, which translates to 121 nodes or ver-
tices in the network. Building networks from the pre-
processed images requires the generation of adjacency
matrices. The adjacency matrix is computed by calculat-
ing the combined functional connectivity (combinedFC).

Bivariate Pearson correlation performs poorly in
cases of "confounding" or "chain" interactions. In such
cases, partial correlation measures the direct connectiv-
ity between two nodes by estimating their correlation
after regressing out effects from all the other nodes in
the network, hence avoiding spurious effects in network
modeling. Whereas in cases of "colliding" interactions,
a partial correlation may induce a spurious correlation.
Thus, Sanchez-Romero and Cole have introduced a com-
bined multiple functional connectivity method[42].

The network is constructed by computing the pair-
wise partial correlation values of voxel intensities in
the PET images to produce an initial adjacency ma-
trix (mat r i xpar t ). A second matrix (mat r i xbiv ar ) is con-
structed by computing the bivariate correlation values
of voxel intensities in the PET images. Now, mat r i xpar t
is modified using mat r i xbiv ar as follows:

mat r i xpar t (i , j ) =

0 i f mat r i xbiv ar (i , j ) = 0

no change otherwi se

(2)
where mat r i xpar t (i , j ) and mat r i xbiv ar (i , j ) is the

element at (i , j ) in the respective matrices. mat r i xpar t
is now the combinedFC adjacency matrix that defines
the network.

The partial correlation is calculated using the corre-
lation between two residuals; the values are computed
using N −2 ROIs as co-factors for every pair of ROIs[43].
The partial correlation values serve as the edge weights
and constitute the values in the adjacency matrices

Partial correlations are computed as correlation of
residuals. The first order partial correlation (ρi j .k ) of xi

and xj , controlling for xk is given by [44]

cor r (r esi d (i |k ), r esi d (j |k )) =
ci j − ci kvk ck j√

vi − ci kvk ck i
√
vj − cj kvk ck j(3)

where ci j = cov (xi , xj ) and vk = v ar (xk )

Further,

ρi j .k =
ρi j − ρi k ρj k√
1 − ρ2

i k

√
1 − ρ2

j k

(4)

Since we are controlling for (N − 2) ROIs for each
pair of ROIs ROIi and ROI j , we calculate the (N − 2) t h
order partial correlation. This is calculated recursively as

F or each ROIk ∈ ROIs
ρi j .ROIs = ρi j .ROIs\{k } − ρi k .ROIs\{k }ρk j .ROIs\{k }√

1 − ρ2
i k .ROIs\{k }

√
1 − ρ2

k j .ROIs\{k }
(5)

The base case of this recursive algorithm is given by
Equation 4.

The estimation of partial correlations[45] is a
computationally intensive task, mainly due to the
pre-calculation of residuals before computing cross-
correlation, because the number of covariates is large;
this calculation is done in a time-optimized manner us-
ing the R package ppcor[44].

Next, the adjacency matrices are thresholded using
a data-driven thresholding schemebased onOrthogonal
Minimal Spanning Trees (OMSTs)[46, 47, 22]. Network
thresholding serves to remove inconsequential (or low-
impact) edges and reduce the network complexity.

The Networkx[48] Python library is used for net-
work construction from the thresholded adjacency ma-
trices and subsequent percolation centrality computa-
tion.
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3.3 | Percolation CentralityComputation
Percolation centrality is a nodal metric and is calculated
for each node. The percolation centrality for each node
v at time t is calculated as shown below:

PC t (v ) = 1

(N − 2)
∑
s,v,r

σs,r (v )
σs,r

x ts[∑
x tv

]
− x tv

(6)

Where σs,r is the number of shortest paths between
nodes s and r pass-through node v ,
x t
i
is the percolation state of node i at time t ,

x t
i
= 0 indicates a non-percolated node and,

x t
i
= 1 indicates a fully percolated node.
The percolation centrality value is calculated for

each network using the inbuilt function of Networkx.
This has a worst-case time complexity of O(n3), where
n is the number of nodes in the network. Using a mod-
ified form of Brandes’ fast algorithm for betweenness
centrality[49], the complexity can be reduced to O(nm),
where m is the number of edges. However, percolation
centrality calculation with target nodes cannot take ad-
vantage of this optimization and has a worst-case time
complexity of O(n3) (see supplementary data)

3.4 | Collective Influence Algorithm
The algorithm is on the basis that, given a network: the
flow of information within the network is optimal with
a minimum number of nodes that weigh heavily on
the flow of information through the said network[31].
In the context of this investigation, the small sets of
nodes/ROIs would prove to be vital in the movement
of beta-amyloid plaques.

The core idea is that the overall functioning of a net-
work in terms of the spread of information (or in our
case, movement of beta-amyloid plaques) hinges on a
specific set of nodes called influencers. This idea of
finding the most influential nodes has been previously
used in other contexts, for example, activating influen-
tial nodes in social networks to spread information[50]
or de-activating or immunizing influential nodes to pre-
vent large scale pandemics[27, 51]. In recent applica-

tions to neuroscience, thismethod has been used to find
nodes essential for global integration of a memory net-
work in rodents[30]. Our work is the first to apply it to
study the progression of AD, to the best of our knowl-
edge. In the context of this investigation, these small
sets of influential nodes/ROIs would prove to be vital in
the movement of beta-amyloid plaques.

With the implementation of Collective Influence
(CI) algorithm, it facilitates to pinpoint the most influ-
ential nodes, more efficiently than previously known
heuristic techniques. CI is an optimization algorithm
that aims to find theminimal set of nodes that could frag-
ment the network in optimal percolation, or in a sense,
their removal would dismantle the network in many dis-
connected and non-extensive components. In percola-
tion theory, if we remove nodes randomly, the network
would undergo a structural collapse at a critical fraction
where the probability that the giant connected compo-
nent exists is G = 0. The optimal percolation is an opti-
mization problem that attempts to find the minimal frac-
tion of influencers q to achieve the result G (q ) = 0.

4 | STATISTICAL ANALYSIS
For this study the null hypothesis is that percolation cen-
trality value does not indicate the propagation of beta-
amyloids within the brain network.

To determine the impact the percolation value has
over each PET scan, a comparison with the regions of
interest from the brain atlas is done using the Multiple
linear regression analysis.

This study is exploratory in nature, and that the
multiplicity problem is significant. And implementation
of multiple test procedures does not solve the problem
of making valid statistical inference for hypotheses that
were generated by the data. But it does assist in describ-
ing the possible mechanism.

4.1 | Pairwise Analysis of Variance
To obtain pairwise group differences, we carry out a pos-
teriori (post hoc) analysis using scikits-posthocs pack-
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age; the Student T-test pairwisely gives us the respec-
tive p values. The ANOVA test is performed for each
node in the network with the null hypothesis that the
mean percolation centrality of that node is the same
across the three stages. To test the null hypothesis, Anal-
ysis of variancewith significance level (α ) of 0.05 is used.

4.2 | Error Correction
To control for multiple comparisons of 121 nodes, the
use Scheffe Test and control for Experiment-wise Error
Rate (EER) is carried out. It is a single-step procedure
that calculates the simultaneous confidence intervals for
all pairwise differences between means.

4.3 | Multivariate Linear Regression
A correlation between the percolation centrality values
for all 121 nodes and psychometric test scores - MMSE
and NPIQ - is computed to identify the regions of in-
terest that can be used as reliable predictors. Instead
of performing multiple correlations across all three diag-
noses, a multivariate regression analysis using regular-
isation techniques, wherein the features are the nodal
percolation centrality values, and the target variable is
the MMSE or NPIQ score. The goal is not to build a
predictive model but to use it to quantify each node’s
influence in distinguishing between the clinical condi-
tions for interpretation purposes. Had the purpose
been building a machine learning model, it would imply
the need to develop elaborate features sets (more than
just percolation centrality) and utilize complex machine
learning architectures (which provide less room for inter-
pretability)

4.4 | Regularization andCross-Validation
We use regularization in our multivariate linear regres-
sion (MLR) to make sure our regression model gener-
alizes better to unseen data. Regularization is neces-
sary to control for overfitting. Here, both Lasso regres-
sion (L1 penalty) as well as Ridge regression (L2 penalty)

are tested, and both provide similar root mean squared
errors (RMSE) and similar desired results. We choose
Lasso with α = 0.1, for reporting our results (see Fig-
ure 9). To quantify the robustness and reliability of our
model, before and after regularization, we perform a
leave one out cross-validation (LOOCV).We choose this
cross-validation strategy because it is unbiased and bet-
ter suited to our smaller sample sizes (especially in PiB
tracer subset). We observe an improvement in valida-
tion RMSE with an increase in regularization (parame-
ter α ), but we also observe that excessive penalization
of weights at very high values of α can result in the re-
gression model converging to the mean of the output
MMSE/NPIQ scores. To take this into account, we also
plot the standard deviation in predicted MMSE/NPIQ
outputs and choose α = 1 for sufficient but not exces-
sive regularization (Further details in supplementary fig-
ures).

5 | RESULTS
5.1 | Demographics
On the basis of the selection criteria, 531 patients were
available for this study. Of this, 48% of the females were
of the Cognitively Normal group, 25% with Mild cogni-
tive impairment, and 27% with Alzheimer’s disease.

43% of the patients received more than 12 years
of education as opposed to only 16% who received less
than 12 years of education, 31% received more than 12
years of education in the MCI group as opposed to 69%
with less than 12 years of education.

47% of the Left-handed patients were in the AD
clinical group as opposed to 26% in the right-handed
patients. One patient in the MCI, two in CN, and four in
AD groups were multilingual.

5.2 | Pairwise ANOVA
The student t-test provides the following results, follow-
ing ROIs are suited to discern between CN and MCI
AV45 tracer:
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• GM Superior parietal lobule 7A L/7P L(p-value=

0.040 & 0.032),
• GMMedial geniculate body L,(p-value = 0.049)

for PiB tracer, following are better at distinguishing be-
tween CN and AD clinical groups:

• GM Anterior intra-parietal sulcus hIP3 R
• GM Insula Ig2 R

For the CN-MCI pairwise p-value <0.05 between MCI
and AD, the following are identified:

• GM Superior parietal lobule 7A L
• WM Superior occipito-frontal fascicle R

Similarly, for AV45 tracer:

• GM Anterior intra-parietal sulcus hIP3 R
• GM Insula Ig2 R
• GM Broca’s area BA44 R

and for the PiB tracer:

• GM Broca’s area BA44 R
• GM Superior parietal lobule 7A L
• WM Superior longitudinal fascicle L
• WM Superior occipito-frontal fascicle R
• GM Amygdala-laterobasal group L
• GM Amygdala-laterobasal group R

have CN-AD clinical group pairwise p-value <0.05. The
regions of interest(ROI) - both the AV45 and PiB tracers
that reject the null hypothesis on the basis of F-value
and p-value are listed in Table 3. The five ROIs for AV45
are:

• GM Superior parietal lobule 7P L
• GMMedial geniculate body L
• GM Anterior intra-parietal sulcus hIP3 R
• GM Superior parietal lobule 7A L
• GM Superior parietal lobule 5L L

and the nine ROIs for PiB are:
• GM Broca’s area BA44 R
• GM Amygdala-laterobasal group L
• GM Amygdala-laterobasal group R
• WM Superior occipito-frontal fascicle R
• GM Superior parietal lobule 7A L
• GM Visual cortex V3V R
• GM Hippocampus hippocampal-amygdaloid transi-

tion area R
• WM Superior longitudinal fascicle L
• GM Primary auditory cortex TE1.1 L
Error Correction using the Scheffe test for the tracers
are as follows: AV45:
• GM Anterior intra-parietal sulcus hIP3 R(p-value =

0.042334) between CN & AD.
• GM Superior parietal lobule 7A L (p-value =

0.041955) between CN&MCI (p-value = 0.024760
) between CN & AD.

PiB:
• GM Broca’s area BA44 R (p-value = 0.005371) be-

tween MCI & AD.
• GM Superior parietal lobule 7A L (p-value

= 0.041955) between CN & MCI (p-value =
0.024760) between CN & AD.

• WM Superior occipito-frontal fascicle R (p-value
= 0.019056 ) between CN & MCI (p-value =
0.049955) between CN & AD.

A one-way between clinical groups ANOVA was con-
ducted to compare the effect of beta-amyloid accumu-
lation on percolation centrality values in the cognitive
normal, mild cognitive impairment and Alzheimer’s dis-
ease patients.

There was a significant effect of the beta-amyloid
accumulation on the percolation centrality values at
p<0.05 level for the three clinical groups[F(3, 454) =
3.002 for AV45 and F(3, 97) = 3.027 for PiB] (see Table
2).
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5.3 | Cross-Validation
Increasing regularization (α ) improves the validation
RMSE (see Supplementary), making it more robust and
generalize to unseen data. But at higher values of α ,
we see that the standard deviation of predicted MMSE
scores decreases to less than < 2, irrespective of clinical
condition. Which could mean that it saturates to pre-
dicting the mean MMSE value when regression weights
are extremely penalized. Thereby choosing a reasonably
small yet effective α value (less than 2), for which the
validation RMSE and the standard deviation in output
predicted MMSE.

5.4 | Multivariate Linear regression
A linear regression model between the percolation cen-
trality values for all 121 nodes and psychometric test
scores - MMSE and NPIQ - is computed to identify the
regions of interests that can be used as reliable predic-
tors. Instead of performing multiple correlations across
all three diagnoses, a multivariate regression analysis us-
ing leave one out cross validation is carried out, wherein
the features are the nodal percolation centrality values
and the target variable are the psychological assessment
scores. For the AV45 tracer with alpha = 0.1, the valida-
tion RMSE = 7.895 & standard deviation = 5.491 and
training RMSE = 3.734 & standard deviation of 3.631
and with a alpha of 1.0, the validation RMSE = 6.786 &
standard deviation = 3.906 and training RMSE = 3.836&
standard deviation of 3.049 and in the case of PiB tracer
alpha = 0.1, the validation RMSE = 8.993 & standard de-
viation = 7.525 and training RMSE = 0.714 & standard
deviation of 4.633 and with a alpha of 1.0, the valida-
tion RMSE = 6.404 & standard deviation = 3.789 and
training RMSE = 2.037 & standard deviation of 3.544

5.5 | Collective Influence Ranking
The collective influence algorithm ranks the ROIs; here,
the rank list is generated for the two tracers- AV45 and
PiB. When a comparison of the rank is carried out be-
tween the clinical groups and tracers in the case of PiB,

the ranking increaseswhenmoving fromCN clinical con-
dition to MCI, and then ranking decreases going from
MCI to AD. Overall the ranking increases by 50% from
cognitively normal condition to Alzheimer’s disease con-
dition. A comparison of the ROIs across clinical condi-
tions and tracers does not provide any new information
at this stage regarding a common or group of common
ROIs across the data(see Table 6).

6 | DISCUSSION
This study’s demographic does not provide enough
knowledge into the possible advantages or disadvan-
tages that environmental or lifestyle provide for beta-
amyloid percolation. This is mainly because the sample
size is small, and the distribution of data points within
the clinical groups is asymmetric(see FIgures 4-6).

The student t-test provides nodes that are capable
of distinguishing between CN and MCI, whereas some
are better at distinguishing between MCI and AD, and
most nodes (Table 4) are better at distinguishing be-
tween CN and AD clinical groups. These are good indi-
cators of distinguishing between the two extreme clini-
cal conditions, but are not necessarily good indicators of
distinguishing between CN and MCI. It is also observed
that in the case of PiB tracer, GM Broca’s area BA44
R is particularly good at distinguishing between MCI (p-
value = 0.044) and AD (p-value = 0.003) (Table 4).

It is observed that percolation centrality values of
certain areas of the brain, such as inferior and superior
parietal lobules, are reliable for the tracer PiB, whereas
for most other cases, the brain areas differ for each
tracer considerably. The variation due to the tracers
could be because AV45 and PiB bind to the amyloids,it is
also observed that the percolation centrality of Broca’s
area is a reliable differentiator between CN and AD clin-
ical conditions, which validates previous findings that
cognitive impairment affects speech production[52].

Graph metrics such as characteristic path length,
clustering coefficient, modularity, and hubs have been
studied and have provided insights into the brain net-
works of AD patients and control groups. Some studies
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have tried to map the progression of MCI to dementia
due to AD [53, 19]; thus, network analysis and the var-
ious graph metrics have shown potential as a tool to in-
vestigate the brain networks.

The reliability of these graph metrics is question-
able since they tend to be influenced by other fac-
tors such as genetic predisposition, lifestyle, etc. Here,
based on the variance analysis and multivariate regres-
sion testing, and the percolation centrality graph metric
computed using the PET images, it is possible to show
the Alzheimer’s disease progressing through the beta-
amyloid networks.

The intensity of a voxel/node is used to determine if
the node is percolated or not; a higher intensity signifies
a percolated node, and zero or lower intensity signifies
an ability to permeate with ease (See Figure 2).

The collective influence algorithm yields nine rank
lists. These tables contain the ranking of the nodes, from
most influential to least, for each patient condition and
type of tracer used(see Figure 5). Moreover, since the in-
fluential nodes are identified using optimal percolation
theory, it validates percolation centrality as a potential
metric for diagnosis. Furthermore, ROIs that could be
a potential indicator of Alzheimer’s disease progression
across the clinical conditions and tracers can be identi-
fied by increasing the number samples.

The results from the Scheffe test provides a means
to validate and increase the confidence in the results (Ta-
ble 5).

The leave one out cross-validation (LOOCV) strat-
egy to test the robustness and reliability of our regres-
sion. Here cross-validation strategy is implemented be-
cause it is unbiased and better suited to our smaller sam-
ple size.

By using the regularization (L1 - Lasso or L2 - Ridge)
to control for overfitting, and it is observed that the ef-
fect of increasing regularization on validation RMSE.

The ROIs obtained from the pairwise t-test for be-
tween the clinical conditions sheds some light and the
percolation of beta-amyloids within the brain. Previous
studies show that the seeding of amyloid-beta occurs in
neocortical and subcortical regions[54], from this study
it is observed that for PiB the following ROI - WM Su-

perior occipito-frontal fascicle R is part of both the neo-
cortical and subcortical regions of the brain. Apart from
this, AV45 tracer has GMMedial geniculate body L ROI
in the subcortical region and the following in the neo-
cortical region -GM Superior parietal lobule 7P L, GM
Anterior intra-parietal sulcus hIP3 R, GM Superior pari-
etal lobule 7A L and GM Superior parietal lobule 5L L.

Prior research shows that damage to the parietal
lobe is common in AD, which can lead to apraxia[52, 55],
which is attested by these results. AD is associated with
atrophy of the cornu ammonis, the subfield of the hip-
pocampus, and deficits in episodic memory and spatial
orientation[56, 57, 58].

Whereas with PiB the following ROIs are in neocor-
tical region - GMBroca’s area BA44 R, GMSuperior pari-
etal lobule 7A L,WMSuperior longitudinal fascicle L and
GM Primary auditory cortex TE 1.1 L.

And the following in the the subcortical region
- GM Amygdala-laterobasal group L, GM Amygdala-
laterobasal group R andGMHippocampus hippocampal-
amygdaloid transition area R.

Age factor not so important but the presence of
beta amyloid deposits is[59], Since these ROIs stand
out irrespective of the clinical condition or demographic
backgrounds, the percolation centrality has a potential
to be a reliable value for AD diagnosis.

6.1 | Limitations
This study does not give any evidence regarding the dis-
ease progression in terms of the ROIs or patient clinical
group. However, this can be addressed by increasing
the number of observations within each patient clinical
group.

The PET tracers used for acquiring the images, Pitts-
burgh Compound B (PiB) and Florbetapir (AV45), are
compared to check forwhich among the two tracers pro-
vide a more consistent or reliable PCv. Here, the AV45
tracer binds with a high affinity to the beta-amyloid
plaque, whereas PiB binds to oligomers or protofibrils. A
possible explanation for the difference in PCv generated
using these tracers would be their binding targets. The
use of second-generation tracers can help improve the
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accuracy and test the applicability of percolation central-
ity on other neurodegenerative diseases and the possi-
bility of using it in metastatic cancer scenarios.

By expanding the dataset to include more patients
and with comprehensive data that factors in healthy ag-
ing shrinkage of the brain, which results in a decrease of
the distances of the brain networks, can help improve
the reliability of the Percolation Centrality value. This
can then provide a setting for testing out other psycho-
logical assessments that can be used as early indicators
for dementia due to Alzheimer’s disease, thereby tailor-
ing it to specific demographics or population subsets.

The current pipeline is built for tracers such as AV45
and PiB, which indicate beta-amyloid plaque concen-
trations directly. However, the pipeline can work with
a second generation tracers and tracers like FDG with
some appropriatemodifications, namely: taking themul-
tiplicative inverse of the percolation states of each of
the ROIs to reflect the behavior of the FDG tracer.

7 | CONCLUSION
This study aims to show that percolation centrality is a
reliable predictor and identifies the nodes that regulate
the movement of beta-amyloid plaque and use them to
track the disease.

This work demonstrates that using the existing neu-
roimaging method, PET-CT, this work can add value
with relatively short computation time provided suffi-
cient hardware capability is present. The ability to pro-
vide a metric to the extent of the disease state is advan-
tageous to the current world of Alzheimer’s. Prolong-
ing life with modern-day medicine pushes patients to a
world of medical experiences that deviate from the nor-
mal. Being able to show the deviation with a value such
as percolation centrality has potential applications.

The reliability of percolation centrality can be im-
proved by addressing the concerns that arise by the fac-
tors such as the number of patients and the number of
patients within each clinical group, time points of data
collection, demographic, and the PET tracers used were
the limiting factors. Thus, this study provides the usabil-

ity of percolation centrality value to determine the state
of the patient and also sets the stage for studying other
neurodegenerative diseases.

Unlike measures such as hub centrality or between-
ness centrality, which provide information regarding a
vital vertex/node within a network, the collective influ-
ence algorithm provides a minimum set of nodes of the
network that are key to the beta-amyloid plaque move-
ment, which can provide information regarding a partic-
ular pathway that is susceptible to the disease.
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8 | FIGURES AND TABLES

F IGURE 1 PET image preprocessing flowchart.

F IGURE 2 The pipeline of the PET-image processing and network construction.
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F IGURE 3 A connected network of all the nodes using the Julich Atlas. Green circles indicate the ROIs, the
connecting lines indicate the edges with their weights as denoted by the accompanying color bar

F IGURE 4 Pie chart of gender distribution of patients within each category: M-male, F-female

F IGURE 5 Distribution of patients with (R)Right or (L)Left Handedness
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F IGURE 6 Patients with number of years of education received within each category, less that 12 years(<12), 12
years(12) and greater than 12 years(>12)

F IGURE 7 Illustrates the findings of the ANOVA. The green circles represent ROIs from AV45 scans with an
f-value greater than the AV45 critical f-value and the blue circles represent ROIs from PiB scans with an f-value
greater than the PiB critical f-value. The critical f-values are tabulated in Table 2.



Gautam et al. 19

F IGURE 8 Illustrates the ROIs that corresponds to MMSE and NPIQ. The green circles represent ROIs
associated with the MMSE psychometric assessment, the red circles represent ROIs associated with the NPIQ
psychometric assessment, and the blue circles represent ROIs associated with both MMSE and NPIQ

F IGURE 9 Regularization using Lasso regression with L1 penalty.



20 Gautam et al.

F IGURE 10 CIRCOS plot comparing ROI ranklists of AD-AV45 and MCI-PiB scans

TABLE 1 Distribution of patients
CN MCI AD

AV45 PiB AV45 PiB AV45 PiB
262 13 76 65 116 19

M - 122
F - 140

M - 8
F - 5

M - 54
F - 22

M - 45
F - 20

M - 67
F - 49

M - 11
F - 8

Total - 275; M - 130, F - 145 Total - 141; M - 99, F - 42 Total - 135; M - 78, F - 57

TABLE 2 Number of Scans per tracer type and corresponding critical F-values
Tracer AV45 PiB
No. of scans 454 97
Critical F-value 3.002 3.027
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Supporting Information
TABLE 3 ROIs that reject the ANOVA null hypothesis, i.e. they have F-values greater than the critical F-values
tabulated in Table 2 and they have p-values less than 0.05. BG - Between Groups,WG - Within Groups

AV45
ROI Sum of Squares df F-value p-value

BG 0.295529 2 3.7881 0.0234GM Superior parietal lobule 7P L WG 17.592231 451
BG 0.314216 2 3.5756 0.0288GMMedial geniculate body L WG 19.816397 451
BG 0.255406 2 3.2166 0.0410GM Anterior intra-parietal sulcus hIP3 R WG 17.905028 451
BG 0.235190 2 3.2131 0.0412GM Anterior intra-parietal sulcus hIP3 R WG 16.505845 451
BG 0.227484 2 3.1184 0.0452GM Anterior intra-parietal sulcus hIP3 R WG 16.449730 451

PiB
ROI Sum of Squares df F-value p-value

BG 0.580235 2 5.6906 0.0046GM Broca’s area BA44 R WG 4.792265 94
BG 0.403694 2 4.6474 0.0151GM Amygdala_laterobasal group L WG 4.082629 94
BG 0.364432 2 4.3872 0.0119GM Amygdala_laterobasal group R WG 3.904149 94
BG 0.418668 2 4.3465 0.0157WM Superior occipito-frontal fascicle R WG 4.527190 94
BG 0.472869 2 4.2163 0.0176WGM Superior parietal lobule 7A L WG 5.271143 94
BG 0.287708 2 4.0442 0.0206GM Visual cortex V3V R WG 3.343623 94
BG 0.416872 2 3.7953 0.0260GM Hippocampus hippocampal-amygdaloid transition area R WG 5.162439 94
BG 0.301459 2 3.7325 0.0276WM Superior longitudinal fascicle L WG 3.796017 94
BG 0.246789 2 3.5855 0.0316GM Primary auditory cortex TE1.1 L WG 3.235020 94
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TABLE 4 Pairwise p-values from the Analysis of Variance. The values in bold represent significant p-values
(<0.05), indicating that the ROI is suited to distinguish between that particular pair of clinical conditions

AV45
ROI CN-MCI p-value CN-AD p-value MCI-AD p-value

GM Anterior intra-parietal sulcus hIP3 R 0.67875 0.030838 0.27162
GM Superior parietal lobule 7A L 0.040561 0.886276 0.060147
GM Superior parietal lobule 7P L 0.032889 0.17607 0.364166
GMMedial geniculate body L 0.049724 0.12863 0.529499
GM Insula Ig2 R 0.537545 0.04853 0.413302

PiB
ROI CN-MCI p-value CN-AD p-value MCI-AD p-value

GM Broca’s area BA44 R 0.932158 0.044271 0.003756
GM Hippocampus hippocampal-amygdaloid transition area R 0.273329 0.602867 0.032379
GM Superior parietal lobule 7A L 0.030896 0.006372 0.412819
GM Visual cortex V3V R 0.366099 0.182049 0.020161
WM Superior longitudinal fascicle L 0.065172 0.023275 0.249212
WM Superior occipito-frontal fascicle R 0.015984 0.019919 0.934997
GM Amygdala_laterobasal group L 0.216778 0.007312 0.032816
GM Amygdala_laterobasal group R 0.077198 0.006742 0.129689
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TABLE 5 Scheffe Test results. The values in bold represent significant p-values (<0.05)

AV45
ROI CN-MCI p-value CN-AD p-value MCI-AD p-value

GM Anterior intra-parietal sulcus hIP3 R 0.916342 0.042334 0.307361
GM Superior parietal lobule 7A L 0.041955 0.024760 0.700914

PiB
ROI CN-MCI p-value CN-AD p-value MCI-AD p-value

GM Broca’s area BA44 R 0.996228 0.070505 0.005371
GM Hippocampus hippocampal-amygdaloid transition area R 0.301853 0.873924 0.045042
GM Superior parietal lobule 7A L 0.041955 0.024760 0.700914
GM Visual cortex V3V R 0.613399 0.490895 0.022726
WM Superior longitudinal fascicle L 0.096172 0.029781 0.503721
WM Superior occipito-frontal fascicle R 0.019056 0.049955 0.996449
GM Amygdala_laterobasal group L 0.430360 0.018984 0.054526
GM Amygdala_laterobasal group R 0.096886 0.015237 0.312719

TABLE 6 Ranking of the top five ROIs under the AD clinical condition with other clinical conditions for both,
AV45 and PiB tracers. First column within each clinical condition indicates the number of occurence of the ROI and
the second column provides the rank.

ROI Tracer CN MCI AD
AV45 142 28 35 30 63 24WM Uncinate fascicle L PiB 4 20 25 37 10 30
AV45 145 29 35 29 57 25GM Superior parietal lobule 7P L PiB 10 42 35 28 12 31
AV45 150 30 34 29 67 26GM.Inferior parietal lobule PFop R PiB 9 24 33 35 6 50
AV45 130 31 44 32 51 26GM Insula Ig2 R PiB 3 29 32 33 11 15
AV45 136 30 47 35 58 27GMMamillary body PiB 5 21 32 32 10 30


