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BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

Abstract

Bachelor of Engineering (Computer Science)

The implementation of the second generation of a Multimodal Virtual Reality

System for small animals

by Raghav Prasad

Electrophysiological recordings in mobile animals in a multimodal real-world environment is

challenging and has left a lot to be desired in terms of understanding the neural mechanisms of

multimodal integration. Thus, a non-invasive experimental setup conducive to electrophysiological

recordings is advantageous. This was accomplished in 2013 at the W.M. Keck Center for

Neurophysics at UCLA, where a custom Virtual Reality setup was independently developed and

used to non-invasively record rodents in a highly immersive virtual environment.

This system allows the body of the rodent to be fixed in the real world, without head fixation.

The rat is placed on top of a silent, spherical treadmill, which provides movement inputs to

drive the motion of the rodent in the virtual world. This opens up a multitude of possibilities to

subject the rodent to a wide variety of stimuli without the constraints of the real world.

This project aims to improve upon the existing system by revamping the codebase, and introducing

new features which will allow researchers to conduct experiments with new virtual worlds and

complex stimuli.

http://www.bits-pilani.ac.in/
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Chapter 1

Introduction

Virtual reality (VR) is being increasingly used in many fields, in particular in neuroscience. VR

presents researchers with the opportunity to present multimodal stimuli with a high degree of

ecological validity and control[3]. Moreover, it allows researchers to construct apparatuses that

are unconstrained by the physical world’s limits and create interesting stimuli, which would be

extremely difficult to maintain in a real-world lab. VR also reduces the number of real physical

components for an experimental setup, substituting them with fewer components that can be

overloaded to achieve multiple functions. This reduces variability in results due to measurement

or operational errors caused by an increased number of different physical components or devices,

making the results of each experiment highly reproducible. This would also reduce the need to

replace the apparatus due to normal wear and tear, thus making maintenance easier.

A proper understanding of multimodal cognitive integration requires highly controlled and precise

stimuli while eliminating any potential variation due to noise in the form of unwanted cues.

Virtual environments present researchers with this high degree of control by allowing a high

level of immersion in an enclosed and controlled space. Virtual environments also allow for

easier electrophysiological recording since the subject is fixated (with varying degrees of freedom

depending on the setup), which means that the recording equipment need not be lightweight

or mobile. Thus, researchers do not need to sacrifice recording quality for the sake of mobility.

Moreover, since the environment is virtual, the recording of other parameters also becomes

much more manageable. Researchers have full information regarding the subject’s position

and orientation at all instants of time, without the need for recording equipment since this

information can be inferred from the software controlling the virtual environment. The resolution

and granularity of the recording can be adjusted to suit the experimenter’s needs.

The current (first) generation of the VR system has been in operation since 2013. The complete

development of the system took close to 4 years, starting in 2009. Broadly, the components of

the VR setup are:

1
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• A cylindrical screen

• A roughly hemispherical convex mirror

• Projector

• Spherical treadmill (trackball)

• Data acquisition hardware

• Arduino boards

The current (first generation) implementation of the VR system was limited by both the hardware

and software available to the researchers at the time. A C++ graphics engine called OGRE,

which is now deprecated, formed the crux of the VR software used to generate the virtual

environments. The data acquisition hardware had hardware and software redundancies, which

can now be eliminated as hardware has become much cheaper. Custom fabricated tracking

sensors were being used to track the movement of the spherical treadmill, which can now be

replaced by much more robust solutions using computer vision.

This project aims to improve upon the existing setup and add some new features as well. This

was accomplished as follows:

• Using the Unity game engine to replace the earlier version, which used OGRE. Unity uses

C# (or JavaScript), so this meant that the entire codebase had to be revamped.

• Replacing the earlier custom tracking sensor implementation of motion tracking with a

computer vision-based approach to tracking called FicTrac.

• Replacing redundant hardware used to synchronize electrophysiological recordings with

the VR with an Arduino.

• Adding new elements to the ensemble of elements that can be used to construct a virtual

world

• Formulating a template for new virtual environments that were previously not possible to

build

This project will present the following benefits to researchers:

• Creation of newer, more complex virtual stimuli to study different multimodal integrations

• Easier expansion of existing virtual reality software because of a modular design
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• Less variability across different runs of the same experiment because of a reduced number

of hardware components

• Improved granularity and resolution of a recording of neural and positional data



Chapter 2

Materials and Methods

2.1 Current VR Setup

The current VR setup is composed of a number of different elements forming a cohesive real-time

system.

Figure 2.1: Schematic of the current (first) generation VR system[1]

4



Materials and Methods 5

2.1.1 Cylindrical screen and mirror

The cylinder is 75 cm tall and has a radius of 36 cm with a 13 cm opening at the center of

the cylinder’s ceiling. This opening holds the convex mirror and the support structure for the

projector. There is another arc-like cutout on the cylinder floor, which houses the top of the

spherical treadmill. The screen is made of a non-laminated lightweight fabric used to make

lampshades. This allows an azimuthal visual stimulus coverage of close to 330 degrees and total

coverage of nearly 4π radians[1].

The mirror is a roughly hemispherical convex piece of aluminum. The mirror is machined out of

6061 aluminum and then hand polished. The mirror’s curvature is calculated from the geometry

of the system using a finite element simulation method. This process only needs to be done once

and yields a .mesh representation of the mirror. Unity cannot parse .mesh files, so this was

converted into an XML file, which specifies the triangles and vertices necessary to generate any

mesh (see procedural mesh generation section). Using this, a mesh is generated and saved as a

Wavefront (.OBJ) file.

2.1.2 Trackball and motion tracking system

The spherical treadmill (from here on referred to as the trackball) is a hollow styrofoam sphere

of radius 30.48 cm and mass roughly equal to 1.5 times the average rat’s mass. This trackball

has three rotational degrees of freedom and zero translational degrees of freedom. The entire

trackball setup consists of an air support cushion, three centering ball bearings, and two motion

tracking laser sensors.

The motion tracking system consists of a control unit and two motion tracking sensors. The

tracking sensors are custom fabricated boards built around a high-end CMOS laser sensor. The

sensors essentially perform the function of a pair of optic mice to give three degrees of rotational

freedom, but with low latency and high precision.

2.1.3 Other peripherals and sensors

The VR setup also consists of a 7-speaker array for auditory stimulus generation. There is also a

projector that projects the virtual environment onto the overhead mirror. There is a reward

dispenser valve used to deliver rewards to the rat, controlled by an Arduino. The entire VR is

generated and delivered from a central computer, which houses the software for generating and

managing the VR behavior. The software controlling the VR is a custom-built application using

a C++ graphics engine called OGRE. There is an independent data acquisition system called
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Neuralynx Cheetah, synchronized with the VR using a series of data acquisition boxes (NIDAQ)

and a separate computer using a custom synchronization software called RatTracker.

2.2 Second generation VR setup: Software and hardware

2.2.1 Blender

Blender is a free and open-source 3D computer graphics software built using Python[4]. Blender

was used to construct complex 3D models that are integral components of the VR setup.

2.2.1.1 Virtual projection setup, predistortion and UV mapping

As described before, the lab uses a unique cylinder and mirror projection setup to achieve a 330◦

screen coverage in the horizontal plane. Since no projector has a horizontal field of view of 330◦,

the lab uses one projector aimed at the ceiling of the cylinder onto a nearly hemispherical convex

mirror. The image is reflected off the mirror and onto the surface of the cylinder. This presents

an intriguing challenge. When the flatscreen image, i.e., the image of the virtual world as we see

it on a flat screen, is projected directly onto the mirror, the mirror will distort this image, and

we will get a distorted image on the cylindrical screen. Thus, the flatscreen image of the virtual

world must be transformed such that after reflection off the mirror, it appears undistorted on

the cylindrical screen. This transformation is called predistortion (see Figure 2.2).

To achieve this predistortion, a virtual setup is created in the virtual world to mirror the real

setup at the lab, i.e., a cylinder of matching dimensions and an overhead mirror was constructed

using Blender and procedural mesh generation (ref. Section 2.2.2.2), respectively. Positioned at

a height of 2 inches (approximately 5.08 centimeters) from the center of the base of the cylinder,

to coincide with the position of the rodent’s eyes, is an array of 6 virtual cameras, each with a

vertical and horizontal field of view of 90 degrees (see Figure 2.3). The view from each of these

virtual cameras is then projected onto the inside of the virtual cylinder, each of them projecting

it onto the region of the cylinder that falls within the camera frustum of that camera. Thus, to

ensure that the projection of each camera’s view is on the correct region of the cylinder, the

cylinder is cut along the points of intersection of the camera frustum with the cylinder (see

Figure 2.4). Once the projection of the camera views is obtained on the inside of the virtual

cylinder (see Figure 2.5), the virtual mirror will now reflect this, and there is one virtual camera

pointed at the mirror from underneath to mimic the real projector projecting onto the mirror

(see Figure 2.6). Thus, we are using the principle of reversibility of the path of light to perform

the predistortion.
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Figure 2.2: Predistortion; mapping the virtual world onto the virtual cylinder. This is a
cross-sectional view of the virtual world + hollow cylinder setup. The red pixel is projected
from the cubical room to the cylinder such that the extended ray’s path passes through the

centre of the base of the cylinder. Similarly for the blue pixel.

Figure 2.3: Virtual cylinder setup with 6 virtual camera array

We use Unity to render each of the six virtual cameras’ views onto the inside of the virtual

cylinder. This rendering is done by capturing the views of each of the cameras onto a 2D texture.
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Figure 2.4: Separation of the cylinder into discrete regions for each camera to project its view

Figure 2.5: Projection of the world onto the inner surface of the virtual cylinder

However, this rendering happens improperly due to incorrect UV-mapping. UV-mapping is the

process of mapping a 2D texture onto a 3D surface. The 2D texture is a 512× 512 px square,

whereas the surface of each of the projection regions of the cylinder is not regular, and the

default mapping does not map the texture correctly in terms of the texture area covered and the
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Figure 2.6: The view of the reflection in the virtual mirror, corresponding to the projection
obtained in Figure 2.5

texture orientation with respect to the cylinder surface. This required manual correction using

the UV editor in Blender.

The UV editor overlays an ”unfolded” version of the 3D surface over the 2D texture. This

unfolded 3D surface is rotated and stretched symmetrically to ensure that the entire 2D texture

is rendered onto the 3D surface and is appropriately aligned and oriented.

2.2.2 Unity

The Unity game engine is an industry-leading piece of software used to make professional games

and XR applications[6]. Given the highly robust nature of the engine and the vast amount of

online community support it has, it was an obvious candidate to replace the OGRE graphics

engine. Some of the advantages of using Unity are:

• Includes a GUI to make development easier for non-programmers. This will be of great

importance in the maintenance of code since the researchers using the VR application

typically won’t be from a programming background.

• Includes an online store that provides a platform for a host of third party plugins (called

assets), making development very easy and highly modular. This project makes use of

three different assets.
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• Includes lots of prebuilt functions to add and manipulate physics in an effortless manner.

Unity uses C# or JavaScript. To keep the codebase similar to the first generation VR, this

project has been written in C#. This is, however, not a simple transpilation from the existing

C++ codebase to C#. The reason for this is that the Unity engine’s power allows the code to

be much more succinct, and it would only be prudent to use this by revamping the codebase

without sacrificing any functionality but instead adding to it. A summary of the most important

scripts in this project is given in Table 2.1.

File name Location Description

Data.cs Final-VR\Assets\

Scripts\Data\Data.cs

This contains two functions, LogHead-
ers and LogData. LogHeaders prints
the column headers to the log file for
the current run. Its called once when
the Avatar is spawned. LogData is
called every frame and it writes times-
tamped log data for each frame on a
separate line

FictracCon-
troller.cs

Final-VR\Assets\

Scripts\Utils\

FictracController.cs

Contains functions to control and
stream data from Fictrac

NeuralynxCon-
troller.cs

Final-VR\Assets\

Scripts\Utils\

NeuralynxController.cs

StartNeuralynxArduino() sends signal
to Arduino to start sending TTL pulses
to Digital Lynx SX. StopNeuralynxAr-
duino() sends signal to Arduino to stop
sending TTL pulses to Digital Lynx SX

TrackFileParser.cs Final-VR\Assets\

Scripts\WorldBuilder\

Tracks\TrackFileParser.

cs

Contains functions to parse
.track files and build a
Track(Final-VR\Assets\Scripts\
WorldBuilder\Tracks\Track.cs)
object

GameObject-
Builder.cs

Final-VR\Assets\

Scripts\WorldBuilder\

GameObjectBuilder.cs

Contains functions to instantiate
GameObjects corresponding to all ele-
ments of the virtual world as described
in a track file

TrackBuilder.cs Final-VR\Assets\

Scripts\WorldBuilder\

TrackBuilder.cs

Opens a File Explorer to choose a
track file, parses it by calling the Track-
FileParser’s ParseTrack function and
then calls functions from GameObject-
Builder to instantiate GameObjects for
the resultant Track

Table 2.1: Important source files

This project uses Unity version 2020.1.10f1

The construction of the VR world takes place from scratch, entirely using code. Since an

experimenter would want to test several different hypotheses, it would only make sense to subject
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the rodent to different stimuli. This is achieved by using a custom world for each different type of

experiment. These worlds are called ”tracks.” Each track has a different layout and is comprised

of different components in different configurations. These tracks are encoded in track files. Track

files are an XML-style document that encodes the quantitative and qualitative data associated

with the components that constitute a track. Track files are parsed by Unity scripts and are

translated into ”GameObjects” (the fundamental entities in Unity).

Figure 2.7: A sample track file snippet

The VR application allows the experimenter to choose the track file at the beginning of the

experiment. This track file is then parsed to produce the virtual world in which the rodent is

free to move around.
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2.2.2.1 Tracks

Virtual worlds are called tracks. A track is defined by an XML style file called a track file (see

Figure 2.7) and has the .track extension. Track files contain definitions for all the constituent

components of the virtual world. A typical track will contain four walls and a floor, along with a

ground polygon, an elevated polygonal plane surface that the avatar will move on. A subregion

of the ground polygon will be demarcated as the live zone. Depending on the track, it will have

zones (visible or invisible) with different actions or functions associated with them. For instance,

a linear track has a plank for a ground polygon and has two reward zones, one at either end of

the plank where the rat will receive a reward (sugar water). Dispensers carry out the actions or

functions associated with the zones (ref. Section 2.2.2.7).

2.2.2.2 Meshes and Procedural Mesh Generation

A 3D mesh is composed of triangles arranged in 3D space. Triangles are in turn defined by three

vertices. A Mesh in Unity is defined by two arrays; vertices and triangles. The vertices

array is an array of type Vector3 and contains the vertices that will constitute the triangles.

The triangles array is an array of type int that specifies the indices in the vertices array

used to define the triangles in 3D space, which will ultimately define a 3D mesh. The triangles

array must have a length that’s a multiple of 3. This is because the triangles array elements are

considered in groups of three to constitute the triangles. For instance, a quad can be defined by

the following arrays:

vertices = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0)}

triangles = {0, 1, 2, 2, 3, 0}

The track usually consists of a room composed of 4 walls and a floor, and an elevated flat

polygonal surface for the rat to move around. Thus many regular planar GameObjects need

to be produced. Out of these, the ones that are planar quads are instantiated from “prefabs”

(ref. Section 2.2.2.4). The elevated flat polygonal surface is usually not regular and needs to be

dynamically generated once at runtime. These are produced using a technique called ”Procedural

Mesh Generation.” Procedural mesh generation is a method whereby one can create meshes of

any shape and size out of vertices and triangles from within a script. These primary meshes

can then create more elaborate and complex structures by warping them or composing and

building on top of them.
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2.2.2.3 Backface Culling

Since the VR system needs to be light and low latency, every possible optimization has been made

to make the VR as fast and responsive as possible. One of the most important optimizations is

backface culling. Backface culling is the process by which only one side of any surface is rendered.

More specifically, the back face of any surface is ”culled,” i.e., it is removed or not rendered.

This is based on the assumption that only one side of a plane is visible at any point in time.

Furthermore, most scenarios would be such that only one side is ever presented to the character.

This makes backface culling a beneficial optimization and has been used in this project as well.

Backface culling manifests itself during Procedural Mesh Generation; since we are generating

meshes at runtime, we must be careful about which face we are exposing. The orientation of a

surface is determined by the normal of that surface. The direction of the normal determines the

front face of any surface. Since the elementary unit of any surface is a triangle, a continuous

surface will have, more often than not, multiple normals; one each for all its constituent triangles.

This is always true for curved surfaces. Thus, when backface culling is on, one must ensure

that each triangle’s front face is facing in the direction opposite to the direction of vision of the

character.

In Procedural Mesh Generation, since the triangles defining the meshes are themselves defined

using vertices, the meshes’ orientation is ultimately dependent on the vertices. The rule in Unity

is that if a triangle is defined using three vertices ordered in the clockwise sense from a given

point of view, the triangle’s front face will be exposed to that point of view; otherwise, the

backface will be exposed to that point of view. Thus, if the array of vertices is presented in a

clockwise sense, the surface will be oriented correctly, else it will need to be reversed. To check

whether the vertices array is clockwise or counterclockwise, the following function is used:

N−1∑
i=0

(x(i+1)%N − xi)(z(i+1)%N + zi)

{
< 0 counterclockwise

else clockwise

where xj and zj are the x and z coordinates of the jth vertex,

N is the length of the array, and

% denotes the modulo operation

2.2.2.4 Prefabs

Prefabs are shorthand for “prefabrications.” These refer to GameObjects that have been designed

as templates to be instantiated at run time. Once prefabs are instantiated at runtime as

GameObjects, the GameObject instances can be manipulated in terms of scale, position, and
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rotation about any of the three axes to modify the size, location, and orientation in space.

Prefabs are designed and stored in a known location. This project makes use of four prefabs:

• CircularPlane: This prefab is used to instantiate reward zones

• Cube: This prefab is used to spawn invisible walls to create boundaries demarcating

the live zone of the character. The live zone of the character is the region of the virtual

environment within which the character is constrained to move.

• Plane: This prefab is used to create walls for the rooms of the virtual environment

• Participant

The Participant prefab is the most important and complex of the four prefabs used in this

project. This prefab is used for the instantiation of the virtual rat avatar. The structure of the

prefab is as follows:
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Participant

Avatar Capsule

Serial Controller

Main Camera

Projection Setup

final cylinder

Back

Bottom

Front

Left

Right

Top

Reflection Probe

Mirror Camera

mirror

mirror

Camera Array

Front Camera

Back Camera

Right Camera

Left Camera

Top Camera

Bottom Camera

The Avatar Capsule is representative of the rat. It contains three important components:

• A Capsule Collider

• A Rigidbody

• A script; DontGoThroughThings.cs

The Avatar Capsule is the entity that must be restricted within the live zone of the virtual

environment. This is achieved with the help of the two components mentioned above. The

Capsule Collider is a Collider that will detect collisions with other Colliders (which will be



Materials and Methods 16

present on the invisible walls acting as the live zone boundaries). The Capsule Collider is also

necessary to detect incursion into trigger zones.

The Rigidbody component is used to define the physics of the Avatar Capsule. We know that

movement along the vertical axis, i.e., jumping upward or dropping downward, is not permitted.

The Rigidbody is configured to include a constraint that freezes its position along the Y (vertical)

axis. Moreover, it configures the collision detection mode for the Avatar Capsule to be Continuous

Dynamic. This prevents the Avatar Capsule from breaching the boundary walls by fast repetitive

collisions.

The third component is a C# script that rectifies a known Unity issue, which causes very

high-velocity objects to pass through barriers. This can occur if the object’s velocity is so high

that the object’s position changes from being on one side of the barrier to being on the other side

in consecutive frames, without the chance for collision detection. The DontGoThroughThings.cs

script uses RayCasting to detect objects and preempt collisions to prevent the problem described

above.

SerialController is a prefab within the Participant prefab. SerialController is made available

through the Ardity asset. SerialController has the SerialController.cs script, which contains

fields to set parameters for the Arduino such as the Serial port name and the Baud rate. It also

provides functions to send serial data to the Arduino from within the VR.

Main Camera gives a first-person perspective of the virtual environment from the point of

view of the rat. This view is without predistortion and is streamed to Display 2. Display 2 refers

to any video out device connected to the computer running the Unity VR application.

The Projection Setup has three major components:

• final cylinder

• mirror

• Camera array

final cylinder is composed of six subparts that form the whole cylinder. These are the regions

obtained as the output from the cylindrical mesh-cutting process in Blender. The cutting of the

cylinder was required to discretize the regions on which each of Camera Array cameras will have

their view rendered. Each subpart of final cylinder has its Material with its Albedo set to the

appropriate texture on which its corresponding camera’s view is rendered.

final cylinder also houses a Reflection Probe and a Mirror Camera. The Reflection Probe is a

spherical object that maps the region in a specified cuboidal volume onto itself as a reflection. This

reflection is then rendered onto other ”shiny” surfaces. The Reflection Probe has a Resolution
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setting, which determines the resolution of the reflection image it captures. This needs to be set

judiciously since this reflection image refreshes every frame and can prove to be unnecessarily

expensive. This project sets it to 512.

Additionally, this project chooses to have HDR turned off since the virtual environments do not

have elaborate lighting that would merit the benefit of having HDR turned on. This also boosts

performance. Moreover, since rats are nocturnal, having complex lighting and HDR would be

wasteful.

Lastly, the Mirror Camera is simply a camera pointed at the mirror. It has a viewport size of

800× 600. The mirror camera displays to Display 1, which corresponds to the projector in the

lab.

mirror is simply the Wavefront (.OBJ) file that was ultimately obtained from the finite-element

simulation process (ref Section 2.1.1). mirror has a different Material applied to it with

maximum smoothness and metallic character. This makes it a perfect reflecting surface and

hence, an ideal mirror.

Camera Array contains six virtual perspective cameras pointing along up, down, front, back,

left, and right directions. Each camera has a vertical field of view of 90 degrees and an aspect

ratio of 1:1, and each of their views is rendered onto their corresponding 512× 512 px 2D texture.

Thus, a combination of the six cameras’ views yields a cubemap of the virtual world, which is

projected on the cylinder.

2.2.2.5 Layers

Unity provides a feature called Layers. This feature allows one to have multiple layers and

instantiate GameObjects to different layers. Each layer is assigned an integer value, starting

from 0. Up to 32 layers can be defined in any project. The first eight layers are builtin and

cannot be changed by a user. This project uses four user-defined layers, namely Projection

Setup, Mirror, Avatar, and Play Area.

The Projection Setup layer contains only the Projection Setup GameObject. The Mirror layer

contains the mirror GameObject. The Avatar layer contains the Avatar Capsule GameObject.

The Play Area layer houses all other GameObjects.

The utility of Layers is seen in two cases:

• Camera culling masks

• Layer based collision detection
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A Camera culling mask is essentially a 32-bit mask for each Camera GameObject. The positions

where the bits are set denote the layers, and by extension, the GameObjects in those layers are

visible to a particular camera. The other layers are invisible to the Camera. The default Camera

culling mask for all cameras is Everything (all bits set to 1).

A modified Camera culling mask is used in each of the Camera Array cameras, and the Projection

Setup bit is reset. This is essential because the Camera Array cameras are meant to view the

virtual world while being housed inside the Projection Setup cylinder. This modified culling

mask ensures that the cylinder is transparent to the cameras in the Camera Array. Similarly,

the Mirror Camera has a modified culling mask with only the Mirror layer bit set. This ensures

that the Mirror Camera sees nothing but the mirror.

Layers are also used in the Unity physics engine to determine collisions. Unity allows a user to

configure which layers, and by extension, their GameObjects are opaque or transparent with

respect to each other in terms of collisions and collision detection. In other words, one can

set a pair of layers such that all the GameObjects from one layer can pass through all the

GameObjects in the other layer without any collision detection, and vice-versa. This can be

modified using the Physics setting in Unity, which provides a Layer Collision Matrix (see Figure

2.8). If an entry in the matrix is checked, the objects in that pair of layers will be subject to

collision detection, else not.

Layer-based collision detection is used in this project to keep the Avatar within the live zone of

the virtual world. Since the Avatar GameObject is spawned using the Participant prefab, the

Avatar includes the Projection Setup and the Avatar Capsule, which is actually representative

of the rat. Thus, we would want the collision detection to occur with the Avatar Capsule only

and not the entire Avatar. This is achieved by setting the Avatar Capsule layer to Avatar and

the layer of the rest of the Avatar to Projection Setup. After this, the Layer Collision Matrix is

modified, and the Projection Setup - Play Area entry in the matrix is unchecked. This would

allow all the Projection Setup GameObjects to pass through the Play Area GameObjects and

vice-versa. However, the Avatar Capsule and the GameObjects in the Play Area layer, including

the invisible live zone boundaries, will be subject to collision detection, precisely the desired

behavior.

2.2.2.6 Logging

Along with electrophysiological recording, it is vital to log events occurring in the virtual world.

To that end, the rat’s position is recorded every frame into a CSV file (see Figure 2.9). Similarly,

significant events occurring in the virtual world must also be recorded, events such as completing

a subset of a foraging task or receiving a reward.
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Figure 2.8: The Layer Collision Matrix

2.2.2.7 Dispensers

Dispensers is the generic term used to describe all the components that deliver stimuli to any

of the modalities except vision. This includes gustatory stimuli such as sugar water reward,

olfactory stimuli such as different odors, and auditory stimuli such as audio clips. The Unity

scripts handle the abstract representations (GameObjects) of the dispensers. Their real-world

counterparts are valves controlled using Arduinos. The hardware for the different dispensers

is overloaded, with one valve and its corresponding Arduino controller being used for multiple

virtual dispensers.
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Figure 2.9: Sample log CSV

2.2.2.8 Triggers

For each of the zones and their corresponding actions, there needs to be a trigger that is set off

once the Avatar enters the zone. The track file specifies triggers that define which dispensers

need to be activated and deactivated upon entry into a particular zone. This is handled by

creating a Trigger class that can store the data specified in the track file. Unity’s mechanism to

detect the entry of the Avatar into a zone is also called a trigger. This project makes use of these

Unity triggers to set off the track file triggers. The Unity trigger mechanism works as follows:

• Each zone is spawned using either the CircularPlanePrefab or Procedural Mesh Generation.
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• In either method, the GameObject instantiated is given a Mesh Collider component and

this Mesh Collider has its isTrigger field set to true.

• Now, whenever another collider collides with the Mesh Collider on the zone GameObject,

it will execute a piece of code which will, in turn, execute the triggers specified in the track

file.

2.2.3 Arduino and Ardity

Arduino is an open-source electronics platform based on easy-to-use hardware and software.

This project uses a single Arduino Uno R3 board. The Arduino is used in conjunction with the

Arduino IDE to write, debug, and upload code to the Arduino. The Arduino is overloaded and

is used to control multiple hardware components. The Arduino Uno R3 has 14 five-volt digital

output pins. Eight of these pins are used to send 8-bit TTL pulses to the electrophysiological

recording hardware. A subset of the remaining six pins is used for other functions, such as

controlling dispenser valves. The main code for the Arduino is uploaded once at the outset. The

code execution is controlled via synchronous and asynchronous control signals sent from the VR

application. The interface between Unity and the Arduino is provided by a third-party asset

called Ardity. Ardity allows bidirectional communication over COM ports from Unity[7]. Ardity

provides fields to set Arduino parameters such as the serial port name and the baud rate. It also

provides functions to send serial data from the Unity application to the Arduino.

2.2.4 FicTrac

FicTrac (Fictive path Tracking software) is a novel vision-based tracking system for estimating

the path an animal makes while rotating an air-supported sphere using only input from a

standard camera and computer vision techniques[5]. Using FicTrac in a closed-loop configuration,

i.e., the output from FicTrac is fed into the VR application to move the rodent in the VR world,

the need for optic mice based motion is eliminated. This is good for the following reasons:

• The current optic mice solution for rodent motion employs circuit boards fabricated in-house

at UCLA. This is a highly customized approach. While the need for the reproducibility

of this setup does not arise, it is still not as good a solution as one, which requires just a

camera and a patterned trackball (spherical treadmill).

• The optic mice solution requires at least two mice to cover the entire range of motion that

the rodent is allowed to have in the VR world; one mouse for motion in the 2D plane and

another for rotation about the vertical axis. Thus, this would require extra code to handle

two mice simultaneously, on top of retrieving the data from the two mice, making the code



Materials and Methods 22

even more cumbersome. In contrast, given that FicTrac is a third party software tool, it

makes the design much more modular and straightforward to implement.

• FicTrac is an open-source project curated by Dr. Richard J. D. Moore and receives regular

community updates. Thus, as time goes on, the VR project’s FicTrac module will receive

updates from the community.

FicTrac is used to control the motion of the virtual character, replacing the current motion

tracker system. FicTrac has the following hardware requirements:

• A patterned trackball. The pattern is a roughly regular distribution of splotches around

the ball.

• A video camera. Resolution is not a constraint, and since this VR setup is meant for rats,

which are relatively not very fast, the camera frame rate is also not a limiting factor.

• Adequate lighting

FicTrac is composed of the following software components:

• A fictrac binary which is the main application

• A configGui binary, which performs calibration

• A config.txt configuration file (see Figure 2.10) which specifies configuration and calibration

parameters for configGui and later fictrac

FicTrac uses computer vision to construct a 2D map of the spherical surface and hence can

estimate the position of the subject. This project employs FicTrac in a closed-loop configuration

using socket programming. FicTrac is created as a server process and waits for a client to connect

to it. The VR application acts as the client process; once the subject is spawned in the virtual

environment, the VR application connects to the FicTrac process and streams data from the

FicTrac server process (see table). The FicTrac process relays positional information regarding

displacement in the XZ (horizontal) plane and orientation information regarding the change in

rotation about the Y (vertical) axis from the previous frame. This information is fed to the

virtual character controller script in Unity, every frame, and is used to move the virtual character

around the virtual world.

2.2.5 Neuralynx Cheetah data acquisition system

Neuralynx Cheetah is the hardware system responsible for recording the neural signals from the

rodent during the experiment. The VR application will interface with this using TTL pulses
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Figure 2.10: Sample FicTrac config file. The details of the important parameters in the config
file can be found in Table 2.2

via an Arduino. The neural recording data timestamps and the corresponding TTL port values

are recorded in a binary format in an “event” file generated by the Neuralynx system. The

VR application logged data is later synchronized with the Neuralynx generated data offline to

prepare all the data for analysis.

The current (first) generation VR setup uses two data acquisition (NIDAQ) boxes in conjunction

with a custom application called RatTracker to synchronize the TTL pulses with the rest of the

VR system. This was highly redundant in terms of the high number of hardware components

used and the introduction of an intermediary software application. This project replaces this

entire peripheral synchronization setup with a solitary Arduino board and the code that gets

loaded onto it. Using the functions supplied by the Ardity asset, the VR application can send

the Arduino signals in terms of integers from 0 to 255 at the appropriate time. This signal is

relayed to the Neuralynx Cheetah system from the Arduino as an 8-bit digital binary TTL signal.

This integer 8-bit binary encoded integer serves as the TTL port value.
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Param
name

Param type Default
value

Valid range Description

src fn string OR int int=[0,∞) A string that specifies the
path to the input video file,
OR an integer that specifies
which of several connected
USB cameras to use. Paths
can be absolute or relative to
the working directory

vfov float (0,∞) Vertical field of view of the
input images in degrees

do display bool y y/n Display debug screen during
tracking. Slows execution
very slightly

save debug bool n y/n Record the debug screen
to video file. Note that
if the source frame rate is
higher than FicTrac’s pro-
cessing frame rate, frames
may be dropped from the
video file

save raw bool n y/n Record the input image
stream to video file. Note
that if the source frame rate
is higher than FicTrac’s pro-
cessing frame rate, frames
may be dropped from the
video file

sock host string 127.0.0.1 Destination IP address for
socket data output. Unused
if sock port is not set

sock port int -1 [0,65535] Destination socket port for
socket data output. If unset
or≤ 0, FicTrac will not trans-
mit data over sockets. Note
that a number of ports are
reserved and some might be
in use. To avoid conflicts,
you should check which UDP
ports are available on your
machine prior to launching
FicTrac (try something like
1111)

com port string Serial port over which to
transmit FicTrac data. If un-
set, FicTrac will not transmit
data over serial

com baud int 115200 Baud rate to use for COM
port. Unused if no com port
set

Table 2.2: FicTrac config parameters
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Results

This final project is built into a cross-platform solution with applications for both macOS and

Windows operating systems. The final application is compact; the Windows application is 224.4

MB and the macOS application is 212.7 MB.

3.1 Limitations

The application, while flexible and robust, requires a healthy amount of resources in terms of

computing and graphics power. The application runs at 30 FPS on a 9th generation 6-core

hyperthreaded, turbo-boost capable Intel i7 paired with an AMD Radeon Pro 5300M 4 GB with

20 compute units, with both the CPU and the GPU running at maximum speed. On systems

with resources lesser than this, the application will invariably run at lower FPS. This can be

alleviated to a certain extent by reducing graphics settings in the Unity project.
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Chapter 4

Conclusion

This project aimed to improve the current generation of the VR system and add new features

to the existing VR setup. The core graphics engine and the codebase have been revamped to

produce a more efficiently performing VR application. The motion tracking system and the

eye-tracking system are upgraded to use computer vision-based tools. The neural recording

system has been upgraded to use less hardware efficiently.

Future improvements can include an increased variety of tracks, more varied stimuli such as

virtual subjects like a person walking in the virtual world, and video cues. The projection setup

and predistortion also have scope for improvement and could use a raycasting solution instead

of the solution proposed in this project. This would eliminate the need to create a custom cut

cylindrical mesh and instead use a standard cylinder.

4.1 EyeLoop

EyeLoop is an open-source Python-based application that easily integrates custom functions via

a modular logic, tracks many eyes, including rodent, human, and non-human primate eyes, and

operates well on inexpensive consumer-grade hardware[2]. EyeLoop can be used in this project

to track the rodent’s eyes and obtain data such as blinking, pupil dimensions, pupil direction.

The current (first generation) solution is a head tracking system where a head-mounted LED is

tracked. Thus, EyeLoop will be a much more robust and accurate alternative to the current

solution.
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